Name: _____ Date: _____

Microplastics Filter Engineering Challenge

Combine different mesh sizes, quantities, and orders to make the most efficient microfiber filter. Be careful not to limit water flow too much! If you have time, try a fourth material and write your results on the back of this paper.

Material	Trial #	Percent Fiber Removal	Flow Observation (circle one)		
Filter #1	1		High	Medium	Low
	2		High	Medium	Low
	3		High	Medium	Low
	Average				
Filter #2	1		High	Medium	Low
	2		High	Medium	Low
	3		High	Medium	Low
	Average				
Filter #3	1		High	Medium	Low
	2		High	Medium	Low
	3		High	Medium	Low
	Average				

Which material did you determine made the best filter? Why?

Did it remove both large and small fibers?

Did it remove *all* of the fibers?